
Crypto-Assistant: Towards Facilitating Developer’s
Encryption of Sensitive Data
Ricardo Rodriguez Garcia, Julie Thorpe, and Miguel Vargas Martin

Faculty of Business and Information Technology
University of Ontario Institute of Technology

Oshawa, Ontario, Canada
Email: {ricardo.rodriguezgarcia, julie.thorpe, miguel.vargasmartin}@uoit.ca

Abstract—The lack of encryption of data at rest or in motion
is one of the top 10 database vulnerabilities [1]. We suggest
that this vulnerability could be prevented by encouraging devel-
opers to perform encryption-related tasks by enhancing their
integrated development environment (IDE). To this end, we
created the Crypto-Assistant: a modified version of the Hibernate
Tools plug-in for the popular Eclipse IDE. The purpose of the
Crypto-Assistant is to mitigate the impact of developers’ lack
of security knowledge related to encryption by facilitating the
use of encryption directives via a graphical user interface that
seamlessly integrates with Hibernate Tools. Two preliminary tests
helped us to identify items for improvement which have been
implemented in Crypto-Assistant. We discuss Crypto-Assistant’s
architecture, interface, changes in the developers’ workflow, and
design considerations.

I. INTRODUCTION

The lack of encryption for sensitive data is well-known as
an important security error; it is one of the top 10 database
vulnerabilities [1], occupies the eighth position in the SANS
Top 25 Most Dangerous Software Errors [2], and is also one
of the top 10 critical web application security flaws according
to OWASP [3]. This security flaw occurs when an application
stores sensitive data in clear text within a resource that might
be accessible to an attacker. When data is sensitive in nature
it should be encrypted or otherwise protected so that if it is
accessed by an attacker it remains unintelligible.

This security flaw must be addressed by software designers
and developers; they can and should make their applica-
tions encrypt the sensitive data it manipulates and stores.
However, many developers are simply unaware of security
considerations. Efforts to help developers gain awareness and
understand how to develop secure code exist in educational
materials [4]. However, many programmers do not receive
such training [5]. Often, security is a secondary goal [6]
that might be desired, but not required [5] depending on the
criticality and perceived risk of the application developed.
Developers’ main goals are normally to meet functionality and
time to market requirements.

We suggest that this security flaw could be prevented by
providing developers with a tool that facilitates the incorpora-
tion of security-related tasks early in the development process
through the enhancement of their integrated development
environment (IDE). We present an IDE extension called the
Crypto-Assistant with the goals of raising awareness among

non-security savvy developers that they should be encrypting
sensitive data at rest, and simplifying the encryption process
to protect data at rest so that developers without sufficient
cryptography knowledge or security training could benefit
from its use.

The Crypto-Assistant prototype focuses on data encryption
using Hibernate, an Object/Relational Mapping (ORM) tool
that facilitates the storage and retrieval of Java objects. One
of the easiest ways to achieve the encryption of sensitive
information is to use the custom Hibernate data types provided
by the Jasypt (Java simplified encryption) library. Neverthe-
less, the process to encrypt sensitive data with Hibernate and
Jasypt is still fairly complex, not particularly intuitive, and
prone to errors; this was the motivation for building a tool
to help developers in this task. The Crypto-Assistant consists
of a series of modifications to the Hibernate Tools plug-in
for Eclipse. Crypto-Assistant uses a security warning as a
mechanism to communicate the risk of compromising sensitive
data due to a lack of encryption. Its ultimate goal is to make
the process as easy and intuitive as possible, and reduce the
potential number of developer errors.

To improve early versions of Crypto-Assistant, we used an
iterative design model by which we conducted two preliminary
studies to simulate the usual conditions that a developer
has to deal with: little familiarity with the application code,
vague requirements, and time constraints. We designed a
programming task that involved the use of the prototype and
asked the participants to meet certain requirements in a given
amount of time. We deliberately hid the fact that we were
focusing on security and observed if the changes introduced
in the programming system influenced the software artifacts
produced. We collected logs, code, and questionnaires from
participants to gain insight regarding their behaviour with
and perception of the Crypto-Assistant. While these studies
involved considerable work, the focus of this paper is on the
description of Crypto-Assistant (see discussion in Section IV).

The remainder of this paper is as follows. Section II
discusses related work. Section III describes the design of
the Crypto-Assistant plug-in including the architecture, user
interface, developer workflow, and design considerations. We
discuss future work, and conclude in Section IV.



II. RELATED WORK

In Section II-A, we identify relevant literature in the form
of taxonomies, standards, guidelines, and frameworks. Next in
Section II-B, we discuss other approaches in software tools to
help developers achieve stronger security.

A. Guidelines and Documentation for Software Security

The Common Weakness Enumeration (CWE) [7] is perhaps
the most complete taxonomy of software vulnerabilities. CWE
provides a resource to help programmers avoid vulnerabilities
as they design new software and write code, and supports
security educators in the development of their teaching cur-
riculum. Nevertheless, the information volume and high detail
level of the CWE may impose a heavy cognitive load on
developers who work under the clock to deliver their software.
Taxonomies of common vulnerabilities include the Open Web
Application Security Project’s (OWASP) Top Ten Project [3]
for web applications, the CWE/SANS Top 25 [2], and the
seven kingdoms of security errors of Tsipenyuk et al. [8] .

Security patterns help developers by documenting collec-
tive knowledge of recurrent scenarios as experienced by the
security community. Some examples of these are the Building
Security In Maturity Model (BSIMM) [9]. BSIMM does not
provide guidelines for courses of action but it shows what
everyone else is doing, helping developers figure out where
they stand with respect to peers.

B. Software Tools for Security

According to Ivan et al. [10], research in the area of security
tools is mainly focused on tools that assist in the testing of
software applications, and tools that help developers create
components that lead to secure systems. However, software
tools for security are not limited to these two branches.
Finifter et al. [11] carried out a comparison of how different
programming languages and web frameworks influenced the
security of web applications. They found that there is a
relationship between the features offered by the frameworks
employed were the most effective defences were those that
were enabled by default or inherent in framework design
or language. They also found that optional protections, even
when present in the frameworks, were not used. The different
programming languages did not show any specific advantage
of one over the other except for the fact that there are errors
that apply only to some languages but not to others such as
buffer overflows that apply e.g., to C and not Java.

A number of tools have been created as plug-ins for specific
IDEs, and perform a specific security analysis on the fly
at the same time developers write code. An example of a
tool that adopts this strategy is the prototype developed by
Xie et al. [5], [12]–[15]. Their prototype offers interactive
support for secure programming integrated with the Eclipse
IDE that helps developers detect some security errors while
they are writing code. The prototype proved to be useful
for novice programmers; however, their test with experienced
users was not very successful, which may have been attributed

in part to the experimental design they applied for the evalu-
ation, among other usability issues of the tool. Some popular
tools for source code analysis are HP’s Fortify, Coverity’s
products, SSVChecker (Static Security Vulnerability Checker)
and LAPSE (Lightweight Analysis for Program Security in
Eclipse) [16]. Some of these tools perform static and dynamic
analysis to detect vulnerabilities.

Other tools, like the one presented by Mutti et al. [17],
take a different approach, presenting a plug-in to develop
security policies using ontological web language, which allows
to automate part of the process of validation and verification.
The Web Goat project [18] is an educational environment for
web application security through the creation of a deliber-
ately insecure web application that can be used by security
practitioners to analyze and test security tools. According to
Microsoft, the Security Development Lifecycle (SDL) Threat
Modeling Tool [19] was the first threat modeling tool not
designed for security experts. It presumably makes threat
modeling easier for all developers by providing guidance on
creating and analyzing threat models. The tool enables any
developer or software architect to: (1) characterize systems
and analyze data flow diagrams; (2) communicate about the
security design of their systems; (3) analyze those designs for
potential security issues using a proven methodology called
STRIDE; and (4) suggest and manage mitigations for security
issues.

In an effort to integrate techniques and tools, and improving
them to support the design of usable and secure systems,
Faily [20] developed IRIS (Integrating Requirements and
Information Security). IRIS guides the selection of techniques
for the system design processes that impact security, usability,
and requirements. Another security tool for developers is
Flawfinder [21], a free open source software that analyzes code
and points out vulnerabilities along with some severity score.
For a list of other static analysis tools see the list compiled
by Wheeler [22].

To the best of our knowledge, Crypto-Assistant is the
first tool that focuses on guiding the developer through the
integration of encryption in their relational databases within
an IDE. Being a cornerstone of cyber security, cryptography
provides the primitives that help attain security goals and
enforce policies. Therefore we believe that it is necessary to
design software tools that foster and facilitate the proper use
of cryptography.

III. CRYPTO-ASSISTANT DESIGN

Crypto-Assistant aims to reduce the prevalence of encryp-
tion missing for sensitive data at rest. The Crypto-Assistant
design was inspired by the scaffolding capabilities of MyE-
clipse [23], a closed source commercial implementation of
Eclipse that only required a database schema to generate
the skeleton for a CRUD (Create, Read, Update and Delete)
application. The goal was to influence the development of the
application in an early stage; before the cost of any necessary
modification would become prohibitive.



We describe the high-level architecture of the Crypto-
Assistant in Section III-A, the Crypto-Assistant interface in
Section III-B, how the Crypto-Assistant changes the devel-
oper’s workflow in Section III-C, and some cryptography-
related design considerations in Section III-D.

A. Architecture
Crypto-Assistant is built on top of the Hibernate Tools plug-

in [24] for the Eclipse IDE. The prototype uses Jasypt to
provide its encryption capabilities. Figure 1 shows a broad
overview of the Crypto-Assistant architecture. The compo-
nents depicted in Figure 1 are described further in this section.

Fig. 1. Crypto-Assistant’s high-level architecture.

Hibernate & Hibernate Tools: Hibernate’s main goal is to
enable developers to keep Java objects persistent by storing
them in relational databases. Hibernate abstracts the underly-
ing database and it claims to increase developer productivity
by reducing 95% of the Java code that is typically required to
access databases. Hibernate provides its own data types that
act as translators between the applications and the underlying
database. To achieve its functionality, Hibernate uses a set of
XML files for configuration and data mapping between the
objects and the relational database; data mapping can also be
done using code annotations embedded in Java code. Hibernate
Tools makes it easier to work with Hibernate; it is a toolset
for Hibernate implemented as an integrated suite of Eclipse
plug-ins. Hibernate Tools includes an XML mapping editor, a
console interface for database queries, a reverse engineering
tool to generate HTML documentation and domain model
classes, and a set of wizards including one to generate the
Hibernate configuration files.

Jasypt Java Simplified Encryption: Jasypt [25] is a Java
library that allows developers to add symmetric encryption
capabilities with minimum effort, and without the need of
having deep knowledge on how cryptography works. Nor-
mally, the use of encryption in Java requires the programmer
to have a broad understanding of Java and cryptography
recommended modes of use. Jasypt simplifies the use of
encryption, providing a more clear and concise application
programming interface (API) that is easy to understand and
use. With Jasypt, encrypting and checking a password can be
as simple as:

The encryption and decryption of text can be as simple as:

The encryption of sensitive data directly from Hibernate
involves modifying the property tags in an XML mapping file
as follows:

These are steps in the right direction, but further steps can
be taken to simplify the process even more, and build the
tasks directly into the developer’s workflow in the hope of
increasing awareness. This is the reason why Crypto-Assistant
was developed.

B. Interface

Most of the Crypto-Assistant functionality is not visible to
the user. The only visible modification consists of the addition
of two new pages in the middle of the wizard, right before the
user finishes the mapping from Java classes to database tables.
These new pages are followed depicted in Figures 2 and 3, in
the same order as they appear in the wizard.

Fig. 2. Selection of fields to be encrypted.

Fig. 3. Property Encryption page, added by the Crypto-Assistant.

The new page added by the Crypto-Assistant, shown in
Figure 2, presents a security warning whose intention is to
raise awareness about the risk of storing sensitive data without
encryption, and it offers a course of action to mitigate that risk,



allowing developers to select the properties or fields of a class
containing sensitive information. On a subsequent screen, it
is possible to configure the password, encryption algorithm,
and key iterations used to generate the encryption key for the
fields selected.

The target users are developers in general, who have little
knowledge regarding security. The new page added displays a
warning message with the purpose of influencing the developer
to incorporate the selection of sensitive data for encryption as
part of his or her current goals. Developers must select the
checkbox beside the fields that they believe to be sensitive.
The page does not explicitly indicate which fields must be
selected, as this will depend on the data stored by each indi-
vidual program. The selection area stands out from the other
components on the page by taking most of the space available,
to draw developers’ attention to the selection task required. All
of the controls and messages on the screen are associated with
the protection of sensitive data through encryption. Developers
will understand they are making progress towards protecting
the sensitive data as they will see a locked padlock icon next
to the fields they select and an unlocked padlock next to the
fields they have not selected.

C. How Crypto-Assistant Changes The Developer’s Workflow

A typical sequence of steps to encrypting sensitive fields
of a database using Hibernate and Jasypt without the Crypto-
Assistant would involve: (1) generating a mapping file between
object classes and the database; (2) for those fields that require
encryption, the user needs to manually change the mapping file
to use the appropriate Jasypt type, making sure the selected
fields are not primary or foreign keys whose encryption may
break the relations of the database; (3) select a password,
encryption algorithm, and key derivation cycles; and (4) update
the Hibernate configuration file. Based on surveys in our two
preliminary user studies of Crypto-Assistant, we identified
several factors that contribute to the problem of developers
not implementing encryption, which can be summarized as
follows: (a) lack of awareness about the risks of storing
sensitive data in plain text; (b) lack of knowledge about
available protection mechanisms and their effective use; and
(c) lack of usability of the protection mechanisms. Crypto-
Assistant makes this process easier by providing a graphical
user interface where the user may chose eligible (i.e., non-key)
fields for encryption and then an interface for adjusting default
values (if desired) for the encryption algorithm, password,
and key derivation cycles. Without Crypto-Assistant, steps 2-
4 are totally unsupervised and non-validated, and thus prone
to syntax or logical errors that can break the relationship of
tables in the database. Crypto-Assistant validates these steps
by providing an encryption user interface integrated within the
IDE, inside the “Hibernate Mapping File” wizard.

Crypto-Assistant helps reduce the chance of human error
in several ways. More specifically, it hides properties such as
the ones used as primary or foreign keys whose encryption
would break the entity relations. This might be confusing if
users are looking for these specific fields but it prevents them

from breaking the relations in the database by mistake. For the
encryption algorithm, AES (Advanced Encryption Standard)
and 3DES (Triple Data Encryption Standard) are two recom-
mended algorithms by NIST [26]; however, the default security
policy of the Java Virtual Machine (JVM) put limits on the
cryptographic strength available by default. The process to
enable stronger cryptography requires the manual installation
of unrestricted policy files (see discussion in Section III-D
below). Development of a tool to assist developers in the
installation and the detection of this file requires significant
effort, and we considered this task out of the scope of the
prototype. Once the user decides to proceed to the preview
page, heuristics are applied to assign a suitable encrypted type
to each one of the properties selected. At the end the mapping
files generated contain embedded configuration settings to
allow Hibernate to use Jasypt’s custom data types to perform
the encryption and decryption of the selected properties.

D. Design Considerations

1) Recommended encryption algorithms: The encryption
algorithm was an important factor to consider. Our implemen-
tation allows the developer to choose their encryption algo-
rithm. Some databases use DES (Data Encryption Standard)
encryption to protect sensitive data. However, DES has long
been considered insufficient to protect any information. As
mentioned above, AES and 3DES are, at the time of writing,
two of the recommended algorithms by NIST for symmetric
encryption [26]. AES encrypts and decrypts data in 128-bit
blocks, using 128, 192 or 256 bit keys. All three key sizes
are considered adequate by NIST for Federal Government
applications [27]. To minimize the chance of using a weak
encryption algorithm, we implemented a warning mechanism
to alert the user if the algorithm selected for encryption is
different from AES. The mechanism is limited to inform the
user that AES is the recommended algorithm but it requires
the strong encryption configuration.

2) Key management and key generation password: Part of
managing keys is deciding where to store them. One easy
solution is to store the keys in a restricted database table or
file. But, all administrators with privileged access could also
have access to these keys, decrypt any data within the system,
and then cover their tracks. The recommended approach is to
use a Hardware Security Module (HSM) to store the keys.
In this case, the keys never leave the hardware and therefore
access can be controlled so neither administrators nor intruders
can penetrate the machine and steal them.

To avoid using a default key generation password, a random
password is generated every time the Crypto-Assistant is used.
The developer is responsible for keeping track of the password
for future use. Optionally, the users can choose their own
password. If the wizard is used to make modifications to
the configuration files, a new password will be generated by
default, users would have to enter it manually each time they
make changes and want to keep the same encryption key.

We recommend the separation of the database and applica-
tion servers. This architecture protects against rogue database



administrators and media stealing; even if the data can be
accessed the key needed to decrypt the data is still out of
reach. Proper management involves restricting personal access
to key storage locations, random key updates, and encoded key
storage servers. An effective key management system involves
every aspect of key creation like distribution, revocation,
network access, and personnel management. Key management
is outside of the scope of this work.

3) Database encryption strategy: The database encryption
strategy implemented takes encryption and decryption out of
the DBMS; the workload takes place at the application server
where Hibernate is running and it integrates transparently with
the application. Thus, the application does not require any
changes in its code. Some code changes may be required,
but only to support cryptography best practices (e.g., key
rotation [27] that involves decryption of the data with the old
key and re-encryption of it using a new key).

IV. FUTURE WORK AND CONCLUSION

There are some avenues for future work in the functionality
of Crypto-Assistant, e.g., by adding support for key manage-
ment and key rotation. Some progress has already been made
towards moving the definition of the encrypted types to a
separate file that would be managed by the Crypto-Assistant to
minimize the exposure of the encryption keys. It may also be
worth allowing developers to revisit the tool through a menu
interface. If users become aware of the feature through the
warning screen, but ignore it at first due to time considerations,
this would allow them to return at a later time at their leisure.

The two preliminary user studies proved to be a challenging
task for a number of reasons, including finding large numbers
of qualified participants with knowledge of Java and Hibernate,
as well as the length of the study per participant. As a
result, we felt that it would be premature to draw solid
conclusions on the effectiveness of Crypto-Assistant based on
these preliminary studies. Nevertheless, these studies helped
shape the current version of Crypto-Assistant as we were
able to realize what needed to be done to improve the tool
in its early versions. Future work would include launching
the tool publicly and collecting information as to how users
utilize it in their normal development tasks, resulting in a more
ecologically valid study outside of the laboratory environment.

It is our hope that this paper stimulates IDE developers
to create and study more tools like Crypto-Assistant to help
create more secure applications.

ACKNOWLEDGMENTS

The second and third authors would like to thank the Natural
Sciences and Engineering Council of Canada (NSERC) for
funding Discovery Grants. We thank Destiny Ewansiha for
his role in improving an earlier version of Crypto-Assitant.

REFERENCES

[1] Team Shatter, 2012, [Accessed: 16-Sep-2012]. [Online]. Available:
http://www.teamshatter.com/

[2] “CWE - 2011 CWE/SANS Top 25 Most Dangerous Software
Errors,” 2012, [Accessed: 06-Nov-2012]. [Online]. Available: http:
//cwe.mitre.org/top25/index.html#CWE-311

[3] “Category: OWASP Top Ten Project - OWASP,” 2012, [Accessed:
04-Nov-2012]. [Online]. Available: https://www.owasp.org/index.php/
Category:OWASP Top Ten Project

[4] M. G. Graff and K. R. V. Wyk, Secure Coding: Principles and Practices.
OReilly & Associates, Inc., 2003.

[5] J. Xie, H. Lipford, and B. Chu, “Why do Programmers Make Security
Errors?” in Proceedings of IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), 2011, pp. 161–164.

[6] A. Whitten, “Making Security Usable,” PhD thesis, Carnegie Mellon
University, 5000 Forbes Avenue Pittsburgh, PA, USA, 2004.

[7] “CWE - VIEW SLICE: CWE-2000: Comprehensive CWE Dictionary
(2.3),” 2012, [Accessed: 04-Nov-2012]. [Online]. Available: http:
//cwe.mitre.org/data/slices/2000.html

[8] K. Tsipenyuk, B. Chess, and G. McGraw, “Seven Pernicious Kingdoms:
a Taxonomy of Software Security Errors,” IEEE Security Privacy, vol. 3,
no. 6, pp. 81–84, 2005.

[9] “The Building Security In Maturity Model (BSIMM),” 2012, [Accessed:
14-Nov-2012]. [Online]. Available: http://bsimm.com/

[10] I. Ivan and L. Breda, “Informatics Security Metrics Comparative Anal-
ysis,” Informatica Economica, vol. XI, no. 4, pp. 107–110, 2007.

[11] M. Finifter and D. Wagner, “Exploring the Relationship Between Web
Application Development Tools and Security,” in Proceedings of the 2nd
USENIX Conference on Web Application Development, Portland, USA,
Jun. 15–16 2011.

[12] J. Xie, H. Lipford, and B.-T. Chu, “Evaluating Interactive Support for
Secure Programming,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, New York, USA, 2012, pp.
2707–2716.

[13] J. Xie, B. Chu, , and H. Richter Lipford, “Idea: Interactive Support for
Secure Software Development,” in Proceedings of the Third Interna-
tional Symposium Engineering Secure Software and Systems, Madrid,
Spain, Feb. 9–10 2011, pp. 248–255.

[14] J. X. J. Zhu, B. Chu, “OWASP ASIDE Project,” 2014, [Accessed:
11-Mar-2014]. [Online]. Available: https://www.owasp.org/index.php/
OWASP ASIDE Project

[15] J. Zhu, J. Xie, H. R. Lipford, and B. Chu, “Supporting Secure
Programming in Web Applications through Interactive Static Analysis,”
Journal of Advanced Research, 2013. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S2090123213001422

[16] “OWASP LAPSE Project - OWASP,” 2012, [Accessed: 8-Nov-
2012]. [Online]. Available: https://www.owasp.org/index.php/OWASP
LAPSE Project

[17] S. Mutti, M. Neri, and S. Paraboschi, “An Eclipse Plug-in for Speci-
fying Security Policies in Modern Information Systems,” in The Sixth
Workshop of the Italian Eclipse Community, 2011.

[18] “Category: OWASP WebGoat Project - OWASP,” 2012, [Accessed:
10-Dec-2012]. [Online]. Available: https://www.owasp.org/index.php/
Category:OWASP WebGoat Project

[19] “SDL Threat Modeling Tool,” 2012, [Accessed: 11-Dec-2012]. [Online].
Available: http://www.microsoft.com/security/sdl/adopt/threatmodeling.
aspx

[20] S. Faily, “A Framework for Usable and Secure System Design,” PhD
thesis, University of Oxford, Oxford, UK, 2011.

[21] D. Wheeler, “Flawfinder,” 2014, [Accessed: 11-Mar-2014]. [Online].
Available: http://www.dwheeler.com/flawfinder/

[22] ——, “Other Static Analysis Tools for Security,” 2014, [Accessed: 11-
Mar-2014]. [Online]. Available: http://www.dwheeler.com/flawfinder/
#othertools

[23] “MyEclipse for Spring: Spring MVC Scaffolding,” 2013, [Accessed:
16-Jan-2013]. [Online]. Available: http://www.myeclipseide.com/
documentation/quickstarts/scaffoldingtutorial/scaffolding.html

[24] “Hibernate Tools - JBoss Community,” 2012, [Accessed: 03-Dec-2012].
[Online]. Available: http://www.hibernate.org/subprojects/tools.html

[25] “Java Simplified Encryption,” 2013, [Accessed: 29-Mar-2013]. [Online].
Available: http://www.jasypt.org/

[26] Computer Security Resource Center, “Cryptographic Toolkit: Block
Ciphers,” 2013, [Accessed: 07-Jan-2014]. [Online]. Available: http:
//csrc.nist.gov/groups/ST/toolkit/block ciphers.html

[27] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “NIST
Special Publication 800-57: Recommendation for Key Management
Part 1: General (Revision 3),” 2012, [Accessed: 07-Jan-2014].
[Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-57/
sp800-57 part1 rev3 general.pdf


